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a significantly greater reduction in noise level than could be accounted
for by their equivalent absorption area alone.

11.3.3 Reverberation in Coupled Rooms

We now proceed to non-stationary processes in coupled rooms: thus, we
must drop the power balances given in eqns. (3.11) and (3.12). Instead.
we assume that the introduction and removal of energy in both rooms
leads to time-varying changes in the total energy contents. (£, )and (E,V. O
ot the two rooms. We represent the stopping of the second source by setting

°, =0andattend tothereverberant sound decay only. Thus. instead of eqns.
031 1} and (3.12), we have the differential equations:

¢ i dE, .
1(‘41151—&1:5:)— -1 T (3.18)
& . dE: -
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Since these equations are linear, we set
E,=E; ,e (3.20)

which means that we assume that the reverberant process is made up of
cxponentially decaying functions. The quantity é which characterizes the
rate of decay of the sound pressure is called the damping constant. Since
we must deal here with energies, which are proportional to the squares of
the sound pressures, the quantity 24 appears in the exponent. Between
and Sabine’s reverberation time, the following relations hold:

6
20=—1In10; o=— 3.21

7" T B2
By setting eqn. (3.20) into eqns. (3.18) and (3.19), and omitting the
common factor e 2%, we get for E| and E,, and so also for their initial
values £, and E,,,, the linear equatxons.

(%411 20V, >E01 —grSnEOZ:O (3.22)

rs,,Eo, +<14: —25V, )Eo,zo (3.23)
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These two equations can be valid for a simple exponential decay with a
single value of § only if both equations result in the same ratio for
Ey,/Eq,. But this requires that the determinant of the coefficients of Eq,
and E,, must vanish:
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The resulting so-called ‘characteristic equation’ for § becomes simpler if
we Introduce the damping constants:

cAy,
81

=0 (3.24)

6, =

(3.25)

which correspond to the decays of the two rooms as they wouid be if
the rooms were uncoupled and the quantity %; 28, were included in their
respective absorption areas.

Equation (3.24) may then be written:

B J
<1 ~f><1 ~,—>—klk, =0 (3.26)
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where k, and k, are the coupling factors according to eqns. (3.8) and
(3.10), but multiplied by 7. Since only their product appears in eqgn. (3.26),
Wwe may introduce their geometric mean

K= kik, (3.27)
and call it the mean coupling coefficient, as is usual in the theory of
coupled oscillators.

Since eqn. (3.26) is quadratic in 4, we must expect two different
damping constants; this is not surprising, since even uncoupled rooms
would have two different values of 0 in general. The corresponding eigen-
values J; and §,, for the coupled rooms are:

- - - — /xl‘*
O1=13(0, +0:)F /30, =0,  +x 5,0, (3.28)

The difference between opand J is greater, the greater the coupling
coefficient k. If we assume 9, <3,, we get:

0,<d, <d,<d,
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With k—0. J; approaches ¢, from below. and J, approaches ¢, from
.bove.

If the coupling between rooms is provided by a partition wall or a
door. the value of k becomes so small that the differences (5, —4,) and
19y —0) become negligible. In this case, we can neglect not only tS,, but
2ven %, ,S,, in the equations:

Ay =A50+2,83; Azz=A0+ 1,5, (3.29)
Thus. the damping constants §, and &, are hardly any different from:
cA, cAag
510 8[/1 520 8V2 ( )

which we found for impenetrable coupling surfaces.

If small rooms are coupled to a large room by open areas (r=1)
twhich was our original problem. see Fig. 3.1). x is generally very small.
tven if k,=5,, A, is neariy unity. at least &k, =5.. 4,, will be verv
small because of the large value of A,,. For smail . the differences
detween o; and J,, and between J, and J, are always small. Thev are
zreatest for 0, =d,, but even then they are not larger than xd,. But if 4,
and J, themseives differ greatly—or, more precisely. if

(01 - O ) 01 2
40 3 /I > K (3.31)

ta condition which is fulfilled for coupled theater boxes on account of the
different volumes). then we may express the square root in eqn. (3.28) in a
power series in (x7), neglect all but the first term. and get:

- - 4 (51(52

0[=0{— K™= -
0;—0,

. , 010,

dy=0,+r1—2 (3.32)
O:—OI

The presupposition (eqn. (3.31)) for this development shows that the
correction terms are so small, compared with ./6,d,, that in
practice the damping constants of the given uncoupled rooms could be
used as a good approximation. By ‘given’ we mean that S, for
#;:S;,) must be added to the other absorption areas, 4,, and A,,, of
the rooms. But this is just what we found to be expedient in our discussion
of the steady-state condition.
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A high degree of coupling is possible in room acoustics only if the partial
absorptionareas, 4, and 4, , are small compared to the coupling area: this
condition would. therefore. begin to approach that of a single, rather
reverberant room. In such a case, it is more suitable to express eqn. (3.28) in
the form:

. 1. . | O -
‘)I.n=§(01+‘):)¢\/Z(01+02)2_(1"’\")0152 (3.33)

and to develop the square root in a power series in (1 —x2). This results
in:

,. 049,
Sx(l—r7)—2 3.34
1= )ol+oﬂ (3.34)

and:
dnx 0, =0, (3.35)
With Ay, <5, and A,4 < S;,. eqn. (3.34) approaches

. AT AL,
O R - ——— 3.36
81+ (3.36)

This means that we get a damping constant corresponding to a single
room having an equivalent absorption area of (4, + A,,) and a volume
of (1, +V,).

11.3.4 Examples of Reverberation in Coupled Rooms

For loosely coupled rooms (that is, for small «), the damping constants
are practically the same as for the uncoupled rooms (with 212512
included in their respective absorption areas); but this does notr mean that
the reverberation process is the same as when there is no coupling. Even
for small r, we may hear in the neighboring room (if we hear anything at
all through the partition) the initial portion of the reverberation in the
source room. Moreover, the decay corresponding to the neighboring
room enters into the resulting reverberation in both rooms.

This resulting reverberation comprises in both rooms terms pro-
portional to e "2 and e~ °u";

E; = Eje™®" + Ejje =% (3.37)
E, = Ej.e™ " 4 E e =% (3.38)
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where the quantities E,, etc., refer to the initial values for the different
cxponential decays; they may even be negative. (For brevity here. we
drop the additional subscript 0, used to signify the time t=0.) In both
rooms, the reverberation ends with the exponential function having
the smaller value of 4.

At the beginning, the decay processes are different. In the source room.
the decay starts approximately as: ’

E\xE (1-200)+E; (1-25,)
That is, it begins as if with the damping constant:

251151+E[11‘5_[1

.39)
Ey+Ey

|98)

01 (
for the second room. we would get the corresponding apparent damping
constant
(50’ =E::‘)1 i3 E!DOH (3.40)
- E13+Elll
Only if the initial values E,, and E,, in the two rooms fulfil the
coupling equations. (3.22) and (3.23). with =4, or d=0y (it would be
possible only with those eigen-values), could we get the same purely
exponential decay in both rooms. For arbirrary initial values of Ey, and
E,,. the pairs E,, E, and E,,, E,, must fulfil these conditions
separately. for d, or J, respectively. Therefore, we may eliminate two
of these quantities: it appears reasonable to drop E, and E, since
they appear to be quantities introduced on account of the coup-
ling. Furthermore. it is expedient in each case to use the condition that
avoids the small differences in |§,—6,] or |6,,~J,]. Thus, we get, from
eqn. (3.23)

AT k,

EIZ=EI s = =E” P
IIAzz_zolV: 1-0,/9,

(3.41)

and by (3.
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to
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ky

Ey, = Evi——5"
wYs

(3.42)

Since ¢,<d, always implies 3,,>§,, and ,> 5, always implies &, <d,,
these equations show that if E;,and E,, have the same sign, then E,;, and
E\. must have different signs. Therefore, we get the equations for the
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resulting reverberation processes by putting eqns. (3.41) and (3.42) into
(3.37) and (3.38):

. k .
Ey=Epe "+ E—————e ¥ (3.43)
1=0,/9,
ks — 2oyt -2yt 3
E, = E“l ~ 50, e " + EjLemn (3.44)

That is, whatever the signs of E; and E,;, may be, we get in one room the
sum, and in the other room the difference, of the elementary exponential
processes. Therefore. the final purely exponential process is asymptotically
approached both from above and below.

We get £, and E,, from the initial values E,, and E,, by the
conditions:

ky
Em:Eu*‘En:ﬁ“_‘

— 0 0,
Eg,=E £ +E
02= “1—61/52 12

with the following results:

_ EOl _EOZkl/"’(l _511//(31)
! I_Kl/ (L—=dy0,)(1 —9,/0,)

(3.45)

Eqy — Eq ky/(1=6,/5,) (3.46)

Eu:= 3 S i3 5
l—x ,/(l—ox,.o:)(l—o”,ol)

The differences expressed in the numerators show that it is possible for
the ratio of the initial energy densities, E, /E,,. to be chosen so that one
of the decay types vanishes. .

If we introduce eqns. (3.45) and (3.46) into (3.43) and (3.44), then we
can find the general solution for given values of E,, and E,,. But we are
again interested only in the special solutions where a sound source
radiates the power P, in the room 1.

Here we assume. first. that the reverberation follows a sufficiently long
steady-state excitation that we can assume a stationary energy density, as
we discussed in Sections II.3.1 and I1.3.2. Thus, we can make use of all
the approximations in those sections. for small x and different damping
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constants, according to eqn. (3.31). Then we may assume:

4P,
Ey = Eq,=k,E
Ly 02 =KaLoy
0
Ey=E,, Eu:=—]\'zls =3 E,, etc.
270,

Therefore, we can describe the reverberation processes by:

4p ) , 8,7 S
X v e~ ¥ 4y “—“1*,—7 3-202[j| (3.47)
cAyy (05 —01)°
4P 6y . 0 N ,
E,x—Lth| ——S—e 30— L pm20x (3.48)
- C:l” 10— 0; 05 —=0,

We gather from these equations that in the source room the second
term (which is produced by the coupling) is rather small at the beginning,
so that it has no influence on the initial level and the first portion of the
decay. Only later does it become predominant on account of the slower
decav. In the neighboring room, by contrast. we must take into account
both terms from the beginning; and the second term exceeds the first very
soon.

Furthermore. we see that. whatever the values for J, and §, may be,
the first and second terms are always added for the source room; this
means that in that room the asymptotic decay is always approached
from above: therefore. in the neighboring room it is always approached
from below. It is plausible that the initial stationary level in the source
room is higher than that which would correspond to the second decay-
tvpe only.

From eqn. (3.40) we can deduce, making use of all the approximations,
that the initial damping constant d,, vanishes. so that the decay E,, in
the neighboring room starts with a horizontal tangent (zero slope). This
holds not only for small x and different values for ¢, and d,; it follows
physically from the general initial conditions. When the source is stopped
in room 1, only dE,'dt but not E,, can suddenly change. In the
neighboring room. the quantity (c¢/4 tS,,E,) represents the power in-
troduced there from the source room. But since that quantity cannot
change suddenly, it follows that the decay E,, can begin only with
dE,/dt=0.

We must now distinguish between the two extreme cases where
0,> 3, and 0, << J,: that is, where the source room is highly damped
and the neighboring room is reverberant. or vice versa.
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The first case may occur when we open the door from a living room.
richly furnished with carpet and luxurious upholstery, into a bare
entrance hall. If we shout in the living room, we hear first the re-
verberation with short decay of the living room; but when the sound
level there has decreased sufficiently, we then notice only the longer
reverberation of the entrance hall. The corresponding diagram of level
versus time is plotted as a full line in Fig. 3.4, left. The dashed line
corresponds to the decay of the level in the entrance hall; notice in this
case the horizontal tangent at the beginning of the decay.

D

t=0

Fig. 3.4 Curves of sound level versus time for reverberation processes in

coupled rooms. after stopping a steady-state source in room 1. Left: the source

room is highly damped and the adjacent room is reverberant. Right: the adjacent

room is highlv damped and the source room is reverberant. Room 1
room 2 ——-,

)

The other extreme case. J, <<d,. corresponds to our initial problem;
that is. to theater boxes. seating areas under balconies. and side aisles
connected to a high nave; all of these are relatively small. "dead” spaces
coupled to a larger “live’ space where the source of sound is located.

Again, Fig. 3.4 (right) shows the curves of level versus time; the full line
corresponds to the source room, the dashed line to the neighboring
room. In the source room, since even at the beginning of the decay its
own longer reverberation process predominates, the shorter decay of the
neighboring room is not heard at all. In the neighboring rooms, however,
we find a process similar to that described above. The decay starts with a
horizontal tangent and then diminishes according to the continuing but
declining supply of energy from the source room. In practice, this first
part of the decay is not apparent, since the necessary assumption of the
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statistical theory (i.e. a homogeneous, isotropic sound field) is not
established until after many sound reflections. But the shift of the decay
slope by a certain delay may be observed.

As a second example. we will discuss the reverberation process that
follows an impulsive supply of energy P,At in the source room. Here we
can make use of the relations with steady-state excitation already
mentioned in Section II. 1.3. We have only to replace the quantity E_ in
eqn. {1.18) with the expressions for E; and E, given in (3.47) and (3.48).
We immediately find. for the reverberation processes following an impul-
sive excitation:

. 4P A/ L , 2874, .
L = 20,70 Lk —————— 7

ey, (51— d,)°
_ P1"A{ ( e~:ol:+ K: _ 010? . eAZJ:: \ (349)
A (0, — 0,)°
PAT, 0, . - .
E,’:l_'l\-, — = e "0 gm0 (3.50)
- Vi T0,—0,

-

Figure 3.5 shows the corresponding curves of level versus time. similar
to those of Fig. 3.4, Especially striking is the difference with respect to
£,, which starts at zero with (log E;— — ). This corresponds to the
svstem equations. (3.18) and (3.19), assuming that we add an impulsive
source in room 1. During the impulse, only the derivatives of highest

5l UL
4 |
e 8>3, Ly
|
i Ll'
- % 2
I
|
| . t
t=1t=0 t=4t=0

Fig. 3.5, Curves of level versus time as in Fig. 3.4, but with impulsive excitation
of room 1. Left: source room more highly damped. Right: source room more
reverberant than the neighboring room. Room 1 , room 2 - — -
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order (here dE/dr) play a role. But this means that E, does not change at
all during the impulse, so it starts with the initial value:

E,y =0, (3.51)

whereas E, jumps from zero to:

1 P At
E., =I71j1>1dz=;/—1 (3.52)

At

This corresponds to the same equal distribution of the supplied energy
over the volume V; as we assumed in Section I. 1.3 for the volume V of a
single room. In the present case. we cannot actually expect that this
initial condition will be reached during the impulse duration: but it is
reasonable to assume that this analysis describes fairly well the later part
of the reverberation process.

We could have derived eqns. (3.49) and (3.30) in an alternative way by
putting the initial values E,," and E,,. given by eqns. {3.51}) and (3.32),
into (3.45) and (3.46) and considering the same simplifying approxi-
mations that we used earlier in (3.47) and (3.48).

Figure 3.5 (left) also shows that in the case d, > o, the reverberation
in room | has changed: it is not a change in principle. but (at the right) in
the level at which the bend in the curve occurs. Since Ly, is decreased by
10log (Jd,,6,), the level of the bend in the curve is correspondingly
lowered. In practice, the bend may not appear in the part of the curve
above the background noise that limits the recording. In the case of
coupled rooms. it becomes very important to distinguish whether the
reverberation follows steady-state or impulsive excitation. and, in the
latter case. whether the reverberation was determined by direct recording
or by "backward-integration’ (see Section 11.4.5) (which would give results
corresponding to steady-state excitation).

A typical case of coupled rooms occurs in opera houses. The re-
verberation time of the auditorium is usually fow (1-2 up to (at most)
16s) because of the custom of fitting the greatest possible number of
seats Into the given room volume. On the performer’s side of the
proscenium, however, the stage house may have a reverberation time up
to 3s. It is paradoxical that open-air scenes, plaved on a bare stage, are
given the most reverberant environment! In such cases. the sound events
on the stage may produce in the auditorium slopes such as those in Fig.
3.4 and 3.5, right (the dashed lines). On the other hand. the pit orchestra,
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heing located more in the auditorium, may produce curves like the solid
lines in the left parts of the figures.

Such a difference. in fact. may even be attractive up to a certain point.
su that experienced listeners just notice it, but others in the audience
perceive it as a ‘special’ but undefined quality.

There have been occasional attempts to compensate for a too-short
reverberation time in the auditorium by allowing the audience to hear
the longer reverberation time of the stage house: but we have learned in
this section that the decay process thus achieved is quite different from
that which a longer reverberation time in the auditorium would give.

i1.2.5 Electroacoustical Coupiing between Rooms

Any consideration of coupied rooms would be incomplete today if we
00k into account onlv the "natural” coupling. discussed up to this point.
without also accounting for the possibiiity of "artficial’ coupling by
means of microphones. amplifiers and loudspeakers.

The most frequently used applications of the latter occur with radio or
television broadcasts and in cinema theaters. The sound is picked up by
2 microphone in one room and is transmitted. either ‘live’ or recorded.
into another room (a living room or a cinema theater), where it is re-
radiated by loudspeakers.

This kind of coupling exhibits two essential differences from natural
coupling. First. the coupling is uni-directional; that is. with respect to our
energy balance, room 1 transfers into room 2 an amount of power £,,
that is proportional to E;:

P:1=K2151 (3.53)

but room 2 transmits no power back to room 1 at all.

The second difference is that the power radiated into room 2 is not
subtracted from the power P, radiated into room !: that is, the elec-
troacoustical equipment does not absorb sound energy in room | and
thus has no influence on the value of A,. (This is not as self-evident as it
appears. At least we will discuss later an arrangement by which the
electroacoustical equipment actually adds to P, and thereby reduces the
value of A,))

The power P,, is taken from an independent power source, which is
‘piloted” by the time-varving E,; only in this manner is the uni-
directional coupling possible. The constant K,,, which contains the gain





